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LARGE-AMPLITUDE FREE VIBRATION OF
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A power-series solution is presented for the free vibrations of a conservative oscillator
having inertia and static non-linearities. The periodic vibrations of the oscillator are
captured by the power-series method upon transforming the time variable into a
harmonically oscillating time. A recursive relation is established between the solution
coe$cients which depend on initial conditions and oscillating time frequency. Rayleigh's
energy principle is then used to determine the oscillating time frequency. The results show
excellent agreement for the vibration frequency with numerical solutions even for relatively
large-vibration amplitudes
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1. INTRODUCTION

The free vibration analysis of engineering structures undergoing large-amplitude
oscillations often involves discretizing the structure and results in a temporal problem
having inertia and/or static non-linearities. In general, such problems are not amenable to
exact treatment and approximate techniques must be resorted to. Amongst these, the
perturbation method whose application has recently been extended to oscillators with
strong non-linearity [1}3] is in common use. However, the algebraic manipulations
inherent in the perturbation procedure involve excessive labour and this prompted the use
of recently developed symbolic software to ease the computational burden.

Recently, a power-series method has been developed and applied to several free and
forced vibration oscillators having cubic non-linearity of the static type [4}6]. In this paper,
the use of the power-series method is extended to a conservative oscillator with inertia and
static non-linearities [7], which simulates the uni-modal large-amplitude free vibration of
a cantilever beam carrying an intermediate lumped mass with a rotary inertia. A signi"cant
advantage of the present method is the minimum algebraic manipulations and computer
coding involved.

2. FORMULATION

Consider the non-linear oscillator

uK#u#au2uK#auR 2u#bu3"0 (1)

subject to the initial conditions u(0)"u
0
, u5 (0)"l

0
. The over-dot denotes di!erentiation

with respect to time t. This system [7] describes the uni-modal large-amplitude free
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vibrations of a slender inextensible cantilever beam carrying a lumped mass and rotary
inertia at an intermediate position along its span. The third and fourth terms in equation (1)
represent inertia-type cubic non-linearity arising from the inextensibility assumption. The
last term is a static-type cubic non-linearity associated with the potential energy stored in
bending. The modal constants a and b result from the discretization procedure and have
speci"c values for each mode.

A power-series analysis of the periodic motion of undamped non-linear oscillators,
starts by transforming the time variable t into a harmonically oscillating time q
such that

q"sinut (2)

which oscillates between the values !1 and #1 at a constant frequency u, to be
determined, as t is increased inde"nitely. Introducing equation (2) into equation (1), the
transformed problem becomes

u2(1#au2) ((1!q2)uA!qu@)#u#au2(1!q2)u@2u#bu3"0, (3)

subject to the initial conditions u (0)"u
0
, u@(0)"l

0
/u, where the prime denotes

di!erentiation with respect to q. In the absence of non-linear terms, the linear theory of
di!erential equations [8] assures a power-series expansion of equation (3) about q"0 that
converges for DqD(1. This e!ectively covers the entire time domain except at the singular
points q"$1. Here, it will be assumed that a convergent power-series expansion for
equation (3) exists in the form

u (q)"a
1
#a

2
q#a

3
q2#2"

=
+
n/1

a
n
qn~1, (4)

where a
i
are constant coe$cients to be determined. By using equation (4), the various terms

in equation (3) can conveniently be written as

u3"
=
+
n/1

c
n
qn~1,

(1!q2)u@2u"
=
+
n/1

g
n
qn~1,

1#au2"
=
+
n/1

f
n
qn~1, (5)

(1!q2)uA!qu@"
=
+
n/1

d
n
qn~1,

where d
n
"n (n#1)a

n`2
!(n!1)2a

n
and c

n
, g

n
, f

n
, and d

n
are constant coe$cients that can

be computed once the constants a
1
, a

2
,2, a

n
are known. Introducing equation (5) into

equation (3) gives

=
+
n/1
Cu2Af1dn#

n~1
+
k/1

d
k
f
n~k`1B#a

n
#au2g

n
#bc

nDqn~1"0. (6)

Equation (6) is satis"ed exactly for all values of time if the square bracketed coe$cient of
each power term is made to vanish. This introduces the recurrence relation between the
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solution coe$cients

a
n`2

"

(u2f
1
(n!1)2!1)a

n
!au2g

n
!bc

n
!u2

n~1
+
k/1

d
k
f
n~k`1

f
1
n (n#1)u2

, n"1, 2,2. (7)

The summation in equation (7) applies for n'1 and, therefore, is set to zero when n"1.
The evaluation of the solution coe$cients begins by considering the initial conditions of

the motion, which is conveniently assumed to start from the maximum displacement
position with zero velocity. Applying these conditions to equation (4) gives

a
1
"u

0
, a

2
"0)0. (8)

The starting values for various coe$cients appearing in equation (7) can now be computed as

f
1
"1#au2

0
, g

1
"0)0, c

1
"u3

0
. (9)

The remaining solution coe$cients a
3
, a

4
are computed recursively from equation (7) in

conjunction with equation (5) for a speci"ed value of the oscillating time frequency u. It
follows that the solution coe$cients depend on the "rst two fundamental constants (a

1
and

a
2
) associated with initial conditions and on the oscillating time frequency which is an

auxiliary parameter that remains to be determined. Because the system is conservative, this
frequency can be obtained by enforcing Rayleigh's energy principle which stipulates equal
maximum potential and kinetic energies. For the system under consideration, the maximum
potential energy, which occurs at maximum displacement, is given by

<
.!9

"1
2
u2
0
#1

4
bu4

0
. (10)

The kinetic energy is written as

¹"1
2
(1#au2)u5 2"1

2
u2 (1!q2)(1#au2)u@2 (11)

and attains a maximum value at the equilibrium position for which ut"n/4, 3n/4, 5n/4,2.

From equation (2), this position is reached at q"$1/J2.
Since q is periodic, equation (4) is capable of capturing periodic motion. Moreover,

a direct result of assuming the motion to start at t"q"0 from maximum displacement
position is the vanishing of all the coe$cients of odd powers in equation (4). Subsequently,
the same motion is captured every half-cycle (positive or negative) of the oscillating time.
This requires the oscillating time frequency to be equal to one-half the vibration frequency
(X), i.e.

u"

X

2
. (12)

3. RESULTS AND DISCUSSION

The amplitude-dependent vibration frequency of the non-linear oscillator, equation (1),
was computed for a set of initial amplitudes by using the recurrence relation, equation (9) in
conjunction with Rayleigh's energy principle. In order to validate the results, a numerical
solution that employs the fourth order Runge}Kutta procedure was also obtained. In each
case, the motion was assumed to start from the maximum displacement position with zero
velocity. This condition determined the "rst two fundamental coe$cients (a

1
and a

2
) from



Figure 1. Vibration frequency versus amplitude u
0

(l
0
"0)0, a"0)1, b"0)2) (n**n; present, L}}}}L;

numerical, *}}}}}*; single HB).
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equation (8). The remaining coe$cients were computed recursively from equation (7) for an
assumed value of the oscillating time frequency. A search for the actual frequency was
conducted by computing the error function e"<

max
!¹

max
for each u and the actual

frequency was obtained when e"0 which ensured that Rayleigh's energy principle was
satis"ed. For small amplitudes, this condition was reached when e had a stationary
minimum value whereas for large amplitudes, the error function changed sign at the correct
frequency.

Figure 1 compares the vibration frequency variation with amplitude u
0

for a"0)1 and
b"0)2 with the results obtained using the numerical solution. Excellent agreement is seen
between the two solutions except for a small discrepancy in the neighborhood of u

0
"8.

Also shown in the "gure are the results of the harmonic balance method using single-mode
approximation. The single-mode assumption u (t)"u

0
cos Xt results in a frequency}

amplitude relation as follows:

X2"
1#0)75bu2

0
1#0)5au2

0

. (13)

Figure 2 demonstrates the convergence of the vibration frequency as the number of terms
is increased. It is worth mentioning that for smaller amplitudes, the number of terms
required to obtain an accurate solution is reduced. Figure 3 compares the computed
vibration frequency with those obtained by the numerical method and harmonic balance
method for various amplitudes with a"1 and b"1. Again, similar agreement is seen
between the power series and numerical solution.Due to the increased importance of the
non-linear terms, the single-mode approximation becomes insu$cient and, therefore, the
two-mode approximation is used. In this case, with u (0)"u

0
and u5 (0)"0, the assumed

solution takes the form

u(t)"A
1
cosXt#A

3
cos 3Xt, (14)

where u
0
"A

1
#A

3
is the total amplitude and A

1
and A

3
are the amplitudes of the

fundamental and third harmonics, respectively. Upon substituting equation (14) into



Figure 2. Convergence of vibration frequency (u
0
"3, a"0)1, b"0)2).

Figure 3. Vibration frequency versus amplitude u
0

(l
0
"0)0, a"1, b"1) (n**n; present, L}}}}L;

numerical, *}}}}}*; single HB, K}}}}K; two-mode HB).
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equation (1), using trigonometric identities and equating the coe$cients of the harmonics
cosXt and cos 3Xt to zero, the following two non-linear algebraic equations are obtained:

A
3
"

0)25b (A3
1
#3A3

3
)!0)5a(A3

1
#9A3

3
)

9X2!1#5aX2A2
1
!1)5bA2

1

, (15)

X2"
1#0)75b (A2

1
#A

1
A

3
#2A2

3
)

1#0)5a(A2
1
#3A

1
A

3
#10A2

3
)
. (16)



TABLE 1

Odd-power series coe.cients for two amplitudes

Amplitude i"1 i"3 i"5 i"7

a
i

2)0000 !3)8481 !0)3621 !0)0034
a
i`8

0)1532 0)1574 0)0533 !0)07306
u
0
"2 a

i`16
!0)1328 !0)0862 0)0299 0)1266

a
i`24

0)1247 0)0172 !0)1178 !0)1697

a
i

5)0000 !7)6600 !2)9260 !2)5350
a
i`8

2)3780 !1)9360 !0)7489 1)8000
u
0
"5 a

i`16
0)0000 !0)7489 1)8000 6)5110

a
i`24

14)250 25)540 39)710 53)110
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These two equations were solved iteratively. As shown in the Figure, the error in the
single-mode harmonic balance is signi"cant in this case because of the increased importance
of the non-linear terms. The two-mode assumption is seen to give better results than the
single one compared to those of the power-series method and the numerical method. It
follows that the power-series solution can capture periodic motions of conservative systems
which are far from the single-harmonic function of time.

Table 1 shows the odd-power-series coe$cients for two amplitudes u
0
"2, 5 with a"0)1

and b"0)2. The number of terms used in each case was 45. For small amplitudes,
a progressive decrease in the absolute value of the coe$cients is obtained, whereas for
large amplitudes, the solution coe$cients increase in absolute value as shown in
Table 1. This feature may be clari"ed by a ratio test. By noting that only even powers of
q exist in equation (4), the convergence of the solution is assured, providing the ratio
between two consecutive terms Da

n`2
q2/a

n
D(1, so that Da

n`2
/a

n
D(q, where q"1/q2. For

small-amplitude vibrations, convergent power-series solutions are obtained over the entire
time domain corresponding to DqD"1 for which q"1 and the coe$cients therefore decrease
in absolute value with an increase of the index. For large-amplitude vibrations, convergent

solutions are obtained [9] over one-quarter of the cycle corresponding to DqD"1/J2 for
which q"2 and the series coe$cients may therefore increase so that Da

n`2
/a

n
D(2 as can be

veri"ed from Table 1 for u
0
"5.

4. CONCLUSION

A power-series solution is presented for the large-amplitude free vibrations of an
oscillator having inertia and static cubic non-linearities. The results show excellent
agreement for the vibration frequency with a numerical solution even for relatively large
amplitudes. A signi"cant advantage of this method is that the computational e!ort involved
is minimized and computer coding is simple. The method can be applied for free vibrations
of conservative oscillators with quadratic or higher order inertia and static non-linearities.
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